MGA 12
Product Information

The multi gas analyser MGA 12 provides the continuous measurement of pollutants in flue gas (e.g. CO, CO2, SO2, NO) and the measurement of O2 as well as continuous process control.

The analyser device is suitability tested according to DIN EN 15267-3 and certified in compliance with QAL1. As a part of the analyser system MGA 12 it is suitability tested and certified for systems after “TA Luft”, 13th and 27th BlmSchV according to DIN EN 15267-3.

Application

The MGA 12 provides both hot and cold extractive multi gas analysers, utilising infrared absorption technologies. These are suitable as single stand-alone systems, twin-stream systems or can be integrated with additional measurements such as dust and flow to provide a complete continuous emissions package.

Application examples:
- Power plants
- Industrial boilers
- Thermal oxidisers
- CHP plants
- Regulatory emissions
- Combustion optimisation
- Process control
- Process safety

Technology

The MGA 12 uses a combination of technologies to provide the best possible measurement for each component: infrared absorption, electrochemical cell and a paramagnetic measuring method.

Infrared absorption is a spectroscopic method based on the absorption of non-dispersive infrared radiation. The reduction in infrared radiation, specific to each component measured, is used to calculate the measurement readings. The MGA 12 also incorporates an oxygen measuring cell. The oxygen sensor operates according to the principle of a fuel cell. The oxygen is converted at the boundary layer between the cathode and electrolyte. The resulting current is proportional to the oxygen concentration.
Measuring ranges

<table>
<thead>
<tr>
<th>Component</th>
<th>Measuring range 1</th>
<th>Measuring range 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>0...125 mg/m³ (0...100 ppm)</td>
<td>0...1000 mg/m³ (0...800 ppm)</td>
</tr>
<tr>
<td>CO₂</td>
<td>0...20 % vol.</td>
<td>-</td>
</tr>
<tr>
<td>SO₂</td>
<td>0...200 mg/m³ (0...70 ppm)</td>
<td>0...1000 mg/m³ (0...350 ppm)</td>
</tr>
<tr>
<td>NO</td>
<td>0...300 mg/m³ (0...225 ppm)</td>
<td>0...1000 mg/m³ (0...750 ppm)</td>
</tr>
<tr>
<td>NO₃</td>
<td>0...200 mg/m³ (0...95 ppm)</td>
<td>0...1000 mg/m³ (0...485 ppm)</td>
</tr>
<tr>
<td>CH₄</td>
<td>0...300 mg/m³ (0...420 ppm)</td>
<td>0...1000 mg/m³ (0...1400 ppm)</td>
</tr>
<tr>
<td>H₂S</td>
<td>0...75 mg/m³ (0...50 ppm)</td>
<td>-</td>
</tr>
<tr>
<td>H₂O</td>
<td>0...3 % vol. [³]</td>
<td>-</td>
</tr>
<tr>
<td>O₂</td>
<td>0...25 % vol. [⁴]</td>
<td>0...25 % vol.</td>
</tr>
</tbody>
</table>

[¹] not part of the suitability test
[²] measurement via electrochemical cell
[³] measurement via paramagnet [²]
[⁴] residual moisture after cooling unit

Photometer

- simultaneous measurement of four infrared gases as well as four other sensors
- free-selectable length of the measuring path with direction changes: 50 mm to 700 mm
- 4-channel pyrodetector with pre-amplifier electronics
- spectral range: 1 µm to 9 µm
- no mechanically moved parts
- power supply: 5 V DC
- power consumption in operation: approx. 20 W (at ambient temperature of 30 °C)

The photometer consists of:

- emitting module
- cuvettes
- reflector modules
- 4-channel pyrodetector
- detector module
Internal design

4-channel pyrodetector

Features and benefits of the device

- analogue output for five gas components with respective limit values and measuring range change-over control
- local diagnosis of the system state via lamps on external panel and detailed diagnosis via MGA12
- bar diagram display for every component
- flow control as well as display of flow rate
- reduced cross-sensitivities by internal spectral filter
- internal monitoring for condensate ingress with switch contact for pump switch-off
- control of a back-purging probe (interval and pulse time)
- zero point drift control
- low maintenance requirement
- first-class price-performance ratio
Technical data

Analysers:
- robust housing with compact 19” insertion 3U;
- 483 mm x 133 mm x 350 mm (w x h x d), weight approx. 4.6 kg

Infrared photometer: thermostatted

Analysers cabinet:
- 1100x600x600mm, 120kg

Ambient temperature:
- 5...30 °C (with air conditioner 5...45°C)

Measuring methods:
- electrochemical cell (O₂, H₂S[1])
- infrared photometer (CO, CO₂, SO₂, NO, NO₂[1], CH₄[1], H₂O[1])
- paramagnetic measuring method[1] (O₂)

Display/operating:
- graphic display (LCD), 240 x 128 Pixel, background-lighted;
- menu-driven operating; display possibility in mg/m³, ppm and vol. %;
- languages: German, English; membrane keyboard

Accuracy:
- < 2% of the respective measuring range

Zero point correction:
- automatic

Sensitivity correction:
- manual, with test gas; optional: automatic

Air pressure correction:
- internal

Response time:
- T₉₅ < 180 s (depending on plant and chosen component)

Digital inputs:
- 8 inputs (opto-coupled)

Digital outputs:
- 16 outputs, potential-free, 24 V DC with max. 0.4 A (max. 10 W); amongst others:
 - output signals for failure, maintenance, maintenance request, limit values,
 - measuring range change-over, Autocal
 - control of automatic probe back purging
 - internal condensate annunciator for function "pump off"
 - dosing control of phosphoric acid (H₃PO₄)

Analogue outputs:
- 5 active analogue outputs, 4...20 mA, potential-free, burden max. 500 Ohm

Service interface RS232:
- for remote software, compatible for all Windows operating systems (XP or higher version):
 - visualisation of all data by intuitive user surface
 - data storage on PC in TXT format
 - loading/saving of all relevant configuration data

Power supply:
- 110 V AC, 230 V AC / 50-60 Hz, 40 W

Suitability test:
- DIN EN 15267, QAL1, ID: 000039321;
- DIN EN 15267-3, TA Luft, 13th and 27th BlmSchV (as system part)

Optional:
- two separated gas paths
- analyser-specific PC user software for visualisation,
 (remote) control and recording of data via RS232 interface

[1] not part of the suitability test

Special models are possible on request.